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Lesson 03: Kinematics 

Translational motion (Part 2) 
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If you are not familiar with the basics of calculus and vectors, please read our freely 

available lessons on these topics, before reading this lesson. 



Projectile motion 

 Projectile motion: Refers to the motion of a body that is given an initial 

velocity v0 (not necessarily vertical), and then moves under the action of the 

gravitational force. The body is called a projectile. 

 v0 can be split into two components – one vertical (parallel to the 

gravitational force) and one horizontal (perpendicular to the gravitational 

force, and hence parallel to the ground). 

 x axis is defined in the horizontal direction, and y axis is defined in the vertical 

direction. 

 v0 is the magnitude of the initial velocity and it makes an angle θ0 with the x axis. 

Hence the y-component of the initial velocity is v0y = v0sinθ0, and the x-

component is v0x = v0cosθ0. 
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 The motion of the projectile is in the vertical xy 

plane (as defined by its initial velocity), since gravity 

can only change the y component of velocity.  

 z coordinate is always 0. 

 x component of velocity is constant since there is no 

acceleration along the x axis. 

 y component of acceleration is constant, and is –g. 

 The origin coincides with the starting point of the motion. 



Projectile motion (continued) 
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Projectile motion (continued) 
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Example 1 

A stone is launched horizontally from the top of Cliff 1 with speed v0. Assume the face of 

Cliff 1 and Cliff 2 is vertical.  

a) What is the minimum speed the stone should have, to land directly on Plain 2? 

b) How far from the base of Cliff 2 will the stone land on Plain 2?  

Take the value of g as 10 m/s2. 
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Solution: For the projectile motion (of the stone), take the origin of the coordinate system at top 

of Cliff 1 (y axis vertically up, and x axis to the right). Then the coordinates of the top of Cliff
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that it must clear is P(90m, -45m). When the stone falls 45m, its x coordinate must be  90m.
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Example 2 
[From IIT 2000]: An object A is kept fixed at the point x = 3m and y = 1.25m on a plank P 

raised above the ground. At t = 0, the plank starts moving along the +x direction with the 

acceleration 1.5 m/s2. At the same instant, a stone is projected from the origin with a 

velocity u as shown in the figure. A stationary person on the ground observes the stone 

hitting the object during its downward motion at an angle of 45o to the horizontal. All the 

motions are in the x-y plane. Find u and the time after which the stone hits the object. 

Take g = 10 m/s2. 

Solution: Let t be the time after which the stone hits object A, and let ux and uy be the x and y 

components of the initial velocity u.  

When the stone hits the object after time t, the (x, y) coordinates of both stone and object are the 

same.  

The angle θ that the velocity of the projectile makes with the horizontal is given by tanθ = vy/vx. This 

angle is 45o when the projectile is moving down (and vy is negative). Therefore, tan45o = 1 = - vy/vx. 

Note there are 3 unknowns for which we can now write 3 equations as given below. 
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Example 2 (continued) 
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Uniform circular motion 
 In uniform circular motion, a particle moves in a circle of radius r with 

constant speed v. 

 In time ∆t, the particle will move a distance v∆t = r∆θ (where ∆θ is in 

radians).  

 ∆θ/∆t is the angle turned in unit time and is called the angular speed, denoted by 

ω. Its unit is rad/s. Note ω = v/r which is a constant for uniform circular motion.  

 To go a full circle, the angle must change by 2π (equivalently, the particle must 

travel a distance of 2πr), therefore the time T required for this = 2π/ω = 2πr/v. T 

is called the period of the motion. 
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 The particle velocity v is always tangential. Though 

magnitude is constant, the direction changes. Hence, there 

is an acceleration. 
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From the triangle, for small Δθ (and hence small Δt),
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Example 3 

The earth has a radius of 6380 km and turns once on its axis in 24 h. What is 

the radial acceleration of an object at the earth’s equator in m/s2? 
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Relative velocity 
 Translational motion is defined with respect to a coordinate system. When 

we change the coordinate system, how is the observed motion affected? 

 e.g. Consider a person P moving in a train. The translational motion of P is 

observed by a person A standing on the ground (outside the train) and another 

person B sitting in the train. How are the two observations related? 

 A and B setup their coordinate system, the axes of which are parallel, so that the 

corresponding unit vectors (i, j and k) in the two systems are the same. They use 

the same unit of length (say meter) on their axes. To study the motion of P, they 

use their coordinate axes to measure position, along with a clock to measure 

time. The coordinate axes with the clock is called a frame of reference. 
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 Position vector rPA is the position of P in A’s coordinate system (frame of 

reference) – also called the position of P relative to A. 

 Position vector rPB is the position of P relative to B. 

 Position vector rBA is the position of B relative to A. Position vector rAB (not shown) 

is the position of A relative to B.  
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Also from the figure, 

Differentiating with respect to time, we have
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Relative velocity (continued) 

 vPA which is the velocity of P in A’s frame of reference, is also called the 

velocity of P relative to A (hence the term relative velocity). 

  We observe the following: 

 Velocity of A relative to B (vAB) is the negative of the velocity of B relative to A (vBA). 

 e.g. if B is moving  at 5 m/s in the positive x direction with respect to A, then from B’s point of 

view, A is moving at 5 m/s in the negative x direction. 

 Velocity of P relative to A (vPA) is the sum of the velocity of P relative to B (vPB) and 

the velocity of B relative to A (vBA). Note the order of subscripts to remember this 

equation. 

 Subscript order can be readily used to extend the equation like vPA = vPB + vBC + vCA where 

for example vBC is the velocity of B relative to C. 
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Example 4 
A river flows north with a speed of 4 m/s. A man steers a boat across the river, and his 

velocity relative to the water is 3 m/s towards the west. The river is 600 m wide. 

a) What is the velocity of the man relative to the earth? 

b) In how much time, does he cross the river? 

c) How far north from his starting point will he be, when he reaches the opposite bank? 
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Example 5 
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A man is walking on a straight horizontal road at 4 km/hr. Suddenly it starts to rain, and he finds that 

the raindrops fall on him vertically. He starts to run at 12 km/hr, and he finds that the drops fall at an 

angle of 45o to the vertical. Find the speed at which the rain falls on the road. 

Solution: Let us denote the man, rain and earth by M, R and E respectively. Take the x-axis along the 

direction in which the man is walking (or running), and the y-axis vertically down. The relative 

velocities when the man is walking are in Fig 1, and when he is running are in Fig 2. For example, uRM 

is the velocity of rain relative to man, when he is walking. Note vRE doesn’t change whether the man 

walks or runs. So we have the following relationships.  
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Projectile on an inclined plane* 
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*This material is secondary in nature, and can be omitted on a first reading.  

α 

θ0 
x 

x’ 

O 

P 

Fig 2: Projectile going 

down a plane 

We now consider projectile motion when the ground makes an angle α to 

the horizontal. There are two possibilities: 

Fig 1: Ground slopes up in the direction of projectile motion from point O to 

point P. 

Fig 2: Ground slopes down in the direction of projectile motion. 

The length OP is called the range R of the projectile. Let us consider the 

scenario shown in Fig 1 first. 
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along the x’y’ axes, where x’ is along the sloping ground, and y’ is normal to it. 
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Projectile on an inclined plane*(continued) 
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Similarly for a projectile going down a plane (Fig 2), the time of flight and maximum range is given by:  
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Example 6* 
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A particle is projected horizontally with speed u, from the top of an inclined plane that makes an 

angle α with the horizontal. How far from the point of projection does the particle strike the plane? 
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Solution: We need to find the range R = OP.  
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