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Lesson 02: Kinematics 

Translational motion (Part 1) 

1 SCIMS Academy 

If you are not familiar with the basics of calculus and vectors, please read our freely 

available lessons on these topics, before reading this lesson. 



Kinematics - translational motion 

 Mechanics: The study of relationships between force, matter and motion. 

 Kinematics: Branch of mechanics that describes motion of a body (matter). 

 Dynamics: Branch of mechanics that relates motion (of matter) to its cause 

(forces). 

 Translational motion: Refers to the motion of a body from one point in space 

to another.  

 Rotational motion: Refers to rotation about an axis (e.g. a spinning ball) as 

opposed to moving from one point in space to another. 

 A body is considered as a particle (a point) to describe its translational motion.  

 e.g. for a rigid body, that is a body whose shape doesn’t change, and which is not 

rotating; any point on it can be used to describe its motion in space. 

 Newtonian mechanics: Mechanics as defined by the scientist Newton. It 

applies to motion of bodies that we see in everyday life.  

 Not applicable at speeds close to the speed of light, and at the atomic level. 
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Describing translational motion 
 To describe translational motion in space, we setup a coordinate system 

with suitable units on its axes (e.g. meter). 

 The position of a particle (whose translational motion is being studied) is 

defined by its coordinates (x, y, z) in this coordinate system. 

 Equivalently, we can define it using its position vector r. 

 Translational motion is described by stating how r, and hence x, y and z 

depend on time t. Knowing r(t) = x(t)i + y(t)j + z(t)k allows us to state the 

following about the motion of the particle: 

 What is the path (curve) along which the particle is moving? 

 How fast, and in what direction is the particle moving? 

 Is the particle slowing down or speeding up? How is the direction of motion 

changing? 
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Motion along a straight line – position, 

displacement and distance 

 We orient one of the axis (usually x axis) along the straight line (of motion). 

 The x coordinate measures the position of the particle. 

 y and z coordinates are always 0. 

 x is a function of time t, hence we write it as x(t). 

 For time t1 < t2, ∆x = x(t2) - x(t1) is called the displacement of the particle in 

the time interval ∆t = t2 – t1. It is the change in the position of the particle. 

 ∆x (the displacement) is positive when the particle moves in the positive x direction, 

and negative when the particle moves in the negative x direction. 

 It is not the same as distance travelled.  

 e.g. if the particle moves from point O to point P and then to point Q, the distance travelled 

is OP (30 m) + PQ (40 m) = 70 m.  

 The displacement is -10 – 0 = -10 m. 

 Displacement is numerically equal to the distance, when the particle is moving in the same 

direction. It is numerically less than the distance, when the particle changes direction. 

 Displacement can be any real number, whereas distance is non-negative. 
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Motion along a straight line - velocity 
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In the graph of x(t),  

• Average velocity over  [t1, t2] = slope of chord PQ 

• Instantaneous velocity at t1 = slope of tangent PT  



Motion along a straight line - acceleration 

SCIMS Academy 6 

1 2

2 1

2 1

Acceleration can be defined in terms of velocity, in the same way that velocity 

was defined in terms 

Average acceleration  over time interval [t , t ] is defined

of p

 as

( )

osition.

Rep

( )

re

a

v t v t
a

t t






sents how much the velocity changes (on an average), for a unit time increment.

0

2

Represents how much the velocity 

Instantaneous acceleration  at a t

changes per unit time, at the give

ime t is defined

n time instant t.

Unit of a is (m/s)

 as

/s = m/s  (m

( ) ( )
( ) lim

e

t

a

v t t v t dv
a t

t dt 

  
 



ters per second squared).

• Positive acceleration implies v is increasing. However, if v is negative, it implies that  v is becoming 

less negative; that is the body (moving in the negative x direction) is slowing down.  

• Therefore a body is speeding up, only when v and a have the same sign; and it is slowing down 

when v and a have opposite signs. 



Straight line motion with uniform 

acceleration 
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Velocity versus time graph 

SCIMS Academy 8 

t1 t1+∆t 

v(t) 

t  t2=t1+n∆t 

Same result can be derived from the v-t graph shown below. We divide the interval [t1, t2] into n equal  

sub-intervals of width ∆t = (t2 – t1)/n.  When ∆t is small enough, we can write 

x(t1 + ∆t) – x(t1) = v(t1)∆t      [v(t) is almost constant in the interval ∆t; hence v(t)∆t is the displacement 

in this interval. It is the area of the 1st rectangle in the figure.] 
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x(t1 + 2∆t) – x(t1 + ∆t)             = v(t1 + ∆t)∆t 

x(t1 + 3∆t) – x(t1 + 2∆t)           = v(t1 + 2∆t)∆t 

… 

x(t1 + (n-1)∆t) – x(t + (n-2)∆t) = v(t1 + (n-2)∆t)∆t 
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Adding all we have 

x(t2) - x(t1) = sum of the area of all the rectangles. 

This area becomes the area under the v-t graph over 

the interval [t1, t2] when ∆t approaches 0 (and hence n 

approaches infinity). 



Velocity time graph for uniform 

acceleration 
 From the v-t graph for uniform acceleration shown below, we see that 

x(t) – x(0) = area of rectangle OABC + area of triangle ABD 

= v0t + ½at2 = area of trapezium OADC = ½(v + v0)t as proved earlier. 

 One important example of constant acceleration is free fall – a body falling 

down because of earth’s gravitational force.  

 Magnitude of this acceleration is denoted by g, and is approximately 9.8 m/s2, 

and its direction is vertically down. 

 This value of g holds, when the free fall is near the earth’s surface (and the height 

of the fall is much less than the earth’s radius), and we neglect air resistance. 
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Example of free fall (Example 1): A ball is thrown vertically up 

(at t = 0) with an initial speed v0.  

a. What is the maximum height reached by the ball?  

b. When does it reach the maximum height? 

c. When does it come back to the starting point? 

d. What is the velocity when it comes back to the starting point? 



Example 1 (free fall) solution 
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Example 2 
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The speed of a car going east is reduced from 30 to 25 m/s in a distance of 68.75m. Find

a) magnitude and direction of the acceleration, assuming it to be constant,

b) the time required to reduce the speed, and

c) the distance in which the car can be brought to rest from 25 m/s, assuming the acceleration in part a).
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Example 3 

SCIMS Academy 12 

2

A ball dropped from the top of a building takes 1 7s to pass a window 3.1m high.

How far is the top of the window below the top of the building?

Take g = 9.8 m/s .
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Solution: We will take the downward direction as the positive x direction.
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2 7

9.8 1
3.1

7 2 49

(3.1 0.1)7 21 m/s (the ve

x v t at s

v

v

 

  

  

2 2 2

0 0

2

locity when the ball reaches the window top)

Next we apply 2  with  = 0, v = 21 m/s and a = 9.8 m/s  to find x, 
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Example 4 
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[IIT 1995] Choose the correct answer:

A particle initially (i.e. at t = 0) moving with a velocity u is subjected to a

retarding force, as a result of which it deccelerates at a rate
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Motion in 3 dimensional space 

 Definitions in 3D are similar to those for motion in a straight line, but it has to be in 

terms of the complete position vector r(t) = x(t)i + y(t)j + z(t)k. 

 For time t1 < t2, ∆r = r(t2) - r(t1) is called the displacement of the particle in the time 

interval ∆t = t2 – t1. It is the change in the position of the particle. 
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Motion in 3 dimensional space (continued)  
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Note the following:
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Example 5 

SCIMS Academy 16 

 IIT 1982  Choose the correct answer.

A particle is moving eastward with a velocity 5 m/s. In 10 s,  the velocity changes to 5 m/s 

northwards. The average acceleration in this time is

a) 0                 2

2 2

1
                                    b)  towards north-east

2

1
c)  towards north-west         d) 2  towards north-east

2

m s

m s m s

1 2
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Solution: Take the positive x direction towards east and positive y direction towards north.

Then initial velocity 5  and final velocity 5
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and direction is that of  (north-west). Hence the answer is c)m s j i


