

Lesson 03: Functions

Functions – an informal viewpoint

- Whenever one value "y" depends on (or is determined by) another value "x", we say that y is a function of x. e.g.
 - Area A of a circle is a function of its radius r.
 - The temperature T at a place on a given day, is a function of time during the day (t).
 - The height (H) of a person is a function of the person's age (x).
- The function can be considered as a rule or a formula that gives the value y, when the value x is given to it.

Function definition

- A set is a collection of objects. These objects are called elements of the set e.g.
 - A = $\{1, 4, 9, 16, 25, 36, 49\}$ or equivalently A = $\{x: x= n^2, where n is a natural number and <math>1 \le n \le 7\}$
 - $B = \{a, e, i, o, u\}$
 - $C = \{x: 0 \le x < \infty\}$
 - D = [0, 1] (equivalent to $\{x: 0 \le x \le 1\}$)
 - E = (0, 2] (equivalent to $\{x: 0 < x \le 2\}$)
- A function f from set A to set B is a rule that assigns a unique (single) element f(x) in B to each element x in A. e.g.
 - $y = f(x) = x^2$
 - f is the symbol used to denote the function. f(x) read as "f of x" or the "value of f at x" is the value that f assigns to any x in set A. Since $f(x) = x^2$ here, the function f assigns the value x^2 to each x in A.
 - x and y are variables. Since y = f(x), y takes the value that the function f assigns to x in A. x can take on any value in A and the corresponding value of y depends on x (with the function f determining the value of y for a given x). Therefore, x is called an independent variable while y is called a dependent variable.

Function definition (continued)

- A function f from set A to set B is also denoted as f : A → B. e.g.
 - $f: R \to R$ and $y = f(x) = x^2$ (R denotes the set of all real numbers).
- A and B are usually sets of real numbers (like sets C, D and E above).
- Function is denoted by letters like f, g, h etc.
- Set A is called the **domain** of the function. When not stated explicitly, it is the largest set of real values x for which f(x) is real.
- All values that f(x) can have (as x varies through the domain) is called the range of the function. Range is a subset of B.
- For $y = f(x) = x^2$, the domain is all real values $x (-\infty, \infty)$, while the range is all real values $\ge 0 [0, \infty)$.
- Different values of x can be assigned to the same value by f. e.g.
 - $f(x_1) = f(x_2)$ for $x_1 \neq x_2$ is a valid assignment by f.
- An **arrow diagram** has an arrow from x in set A to f(x) in set B to pictorially show the assignment done by the function. e.g. for $f(x) = x^2$

Function examples

- Area A of a circle is a function of its radius r
 - A = f(r): This says that the variable A is the value of function f at r. But what is function f?
 - $f(r) = \pi r^2$: This says that the value of function f at r is equal to πr^2 . Now the function is defined.
 - A = f(r) = πr^2 : This says that the variable A is equal to the value of the function f at r, which is equal to πr^2 . Thus, we have expressed the circle area A as a function of radius r.
- Consider $f(x) = 3x^2 + 8$
 - $f(1) = 3.(1)^2 + 8 = 11$
 - $f(2) = 3.(2)^2 + 8 = 20$
 - Domain of the function is all real values x.
 - Range is [8, ∞). Why? $x^2 \ge 0$, so the min value of $3x^2 + 8$ is 8.

Some functions and their graphs

Graph of a function f(x) is the set of all points (x, y) in the coordinate plane such that y = f(x). x takes all values in the domain of f(x).

Odd Powers of x Note range for these functions is $(-\infty, \infty)$

Even Powers of x Note range for these functions (except the constant function) is $[0, \infty)$

Polynomial function of degree n has the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ ($a_n \ne 0$)

Common functions (continued)

Greatest integer function written as $y = f(x) = \lfloor x \rfloor$ assigns to each x, the greatest integer less than or equal to x.

Note the range consists of all integers. Also y jumps from one integer to the next, e.g. from 2 to 3, as x changes from "a little less than 3" to 3.

Absolute value function y = f(x) = |x| is defined as

y = |x|

The graph consists of the blue lines and the dots. The sloping black line y = x, acts as a reference. Dots (found at integer values) indicate that the point belongs the graph of |x|.

Sum, difference, product and quotient of functions

For every x in the domain of both functions f(x) and g(x); the sum, difference, product and quotient are defined.

Sum
$$(f+g)(x) = f(x)+g(x)$$

e.g. the value of the sum function (f + g) at x, is the value of the function f at x, plus the value of the function g at x.

Difference
$$(f-g)(x) = f(x) - g(x)$$

Product
$$(fg)(x) = f(x)g(x)$$

Quotient
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 Also, g(x) must not be 0

Example:

Let
$$f(x) = \sqrt{x+1}$$
 and $g(x) = \sqrt{4-x^2}$

Domain of
$$f(x)$$
 is $[-1, \infty)$ (since $x + 1 \ge 0$)

Domain of g(x) is [-2, 2] (since 4 -
$$x^2 \ge 0$$
)

Points common to both domains [-1, 2]

Therefore,

$$(f+g)(x) = \sqrt{x+1} + \sqrt{4-x^2}$$
 with domain [-1, 2]

$$(f-g)(x) = \sqrt{x+1} - \sqrt{4-x^2}$$
 with domain [-1, 2]

$$(fg)(x) = \sqrt{(x+1)(4-x^2)}$$
 with domain [-1, 2]

$$\left(\frac{f}{g}\right)(x) = \sqrt{\frac{x+1}{4-x^2}}$$
 with domain [-1, 2) since 4 - x^2 must not be 0.

$$\left(\frac{g}{f}\right)(x) = \sqrt{\frac{4-x^2}{x+1}}$$
 with domain (-1, 2] since $x+1$ must not be 0

Composite functions

If f(x) and g(x) are functions, then the composite function $f \circ g$ ("f composed with g") is defined as $(f \circ g)(x) = f(g(x))$ [the value of function f at g(x)]

- Given a x in the domain of g
 - function g assigns (maps) it to g(x).
 - If g(x) lies in the domain of f, then f(x) assigns the value f(g(x)) to it.
- Therefore, composite (f

 g) is defined for all x where g(x) lies in the domain of f.
- $(g \circ f)(x) = g(f(x)) \neq (f \circ g)(x) = f(g(x))$

Function f